Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates
نویسندگان
چکیده
Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI:http://dx.doi.org/10.7554/eLife.00348.001.
منابع مشابه
Bidding the CpG island goodbye
Experiments on seven vertebrates suggest that identifying the locations of islands of non-methylated DNA provides more insights into evolutionarily-conserved epigenetic regulatory elements than studies of CpG islands.
متن کاملPattern of DNA cytosine methylation in Aeluropus littoralis during temperature stress
DNA methylation as an epigenetic mediator plays the important role in spatial and temporal gene regulation and ensures the stability and the plasticity of organism. In this investigation, methylation sensitive amplification polymorphism (MSAP) were assessed in CCGG sites on a halophytic plant, Aeluropuslittoralis in response to different temperature stresses including freezing...
متن کاملThe elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates
BACKGROUND Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene s...
متن کاملUnderstanding the relationship between DNA methylation and histone lysine methylation☆
DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine ...
متن کاملGenomic context analysis reveals dense interaction network between vertebrate ultraconserved non-coding elements
MOTIVATION Genomic context analysis, also known as phylogenetic profiling, is widely used to infer functional interactions between proteins but rarely applied to non-coding cis-regulatory DNA elements. We were wondering whether this approach could provide insights about utlraconserved non-coding elements (UCNEs). These elements are organized as large clusters, so-called gene regulatory blocks (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013